64=-1664t+4t^2+

Simple and best practice solution for 64=-1664t+4t^2+ equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64=-1664t+4t^2+ equation:



64=-1664t+4t^2+
We move all terms to the left:
64-(-1664t+4t^2+)=0
We get rid of parentheses
-4t^2+1664t+64-=0
We add all the numbers together, and all the variables
-4t^2+1664t=0
a = -4; b = 1664; c = 0;
Δ = b2-4ac
Δ = 16642-4·(-4)·0
Δ = 2768896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2768896}=1664$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1664)-1664}{2*-4}=\frac{-3328}{-8} =+416 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1664)+1664}{2*-4}=\frac{0}{-8} =0 $

See similar equations:

| 2x+112=100 | | 1/2(x-3)=16 | | 12(n/6)-12(5n/12)=12(1/6 | | 3a+5=11-3a | | t=(9+5)*4 | | 15-3(2q=1) | | X/8+x/8=13/40 | | 2x+184=156 | | x+11(x-4)=-28 | | 2/3(-9y-15)=30-2y | | -7(x-4)+6=20 | | 3(3x-8)-5=3(x-3)-8 | | 2/3x-29=46 | | -6+x=-(6-x) | | 7+7x=7(x+1) | | 25x-4=1+x-1x | | 15+3x=3(x+6)-3 | | -1/2(2/3r-3/4)-7/2=83/24 | | -(1+x)-5x=-2-6x | | 5y-3=9y+33 | | 8x+69=2(1+4x) | | 9x-5=5x-101 | | -7x-12=19 | | 5/2=v-3/2 | | 4x/5-7=1 | | 1/3)-(7/4k+1)-10/3=13/8 | | 8x-(3x-15)=41 | | x-2/3-1/2=5/6 | | 5(r+8)-2(1-r)=1 | | 5(2x-9)=25 | | 41/9=5/2(r+2/3-1/3r | | -3x+(-15)=33 |

Equations solver categories